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Abstract. We investigate polaron formation in a many-electron system in the presence of a local repulsion
sufficiently strong to prevent local-bipolaron formation. Specifically, we consider a Hubbard-Holstein model
of interacting electrons coupled to dispersionless phonons of frequency ω0. Numerically solving the model
in a small one-dimensional cluster, we find that in the nearly adiabatic case ω0 < t, the necessary and
sufficient condition for the polaronic regime to occur is that the energy gain in the atomic (i.e., extremely
localized) regime Epol overcomes the energy of the purely electronic system Eel. In the antiadiabatic case,
ω0 > t, polaron formation is instead driven by the condition of a large ionic displacement g/ω0 > 1
(g being the electron-phonon coupling). Dynamical properties of the model in the weak and moderately
strong coupling regimes are also analyzed.

PACS. 71.38.+i Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron
and phonon-phonon interactions – 71.10.Fd Lattice fermion models (Hubbard model, etc.) –
71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

There is increasing evidence that polarons are formed
in the lightly doped insulating phase of the high tem-
perature superconducting cuprates [1,2] and in the high-
temperature paramagnetic phase in doped manganites [3].
On the theoretical side, simple polaronic models like the
Holstein and the Su-Schrieffer-Heeger models have at-
tracted intensive studies in the last few years. However,
whereas the cases of one or two polarons have been
carefully investigated both numerically [4–10] and ana-
lytically [11,12], the case of many polaronic carriers is
still incompletely understood. The relevance of electronic
correlations in the materials mentioned above provides
a strong motivation to study the combined effect of the
electron-phonon coupling which leads to polaronic fea-
tures and the strong electron-electron interaction. The
main goal of the present work is to numerically investi-
gate strongly correlated many-particle systems interacting
with phonons in order both to identify a simple criterion
for the formation of a polaronic state and to characterize
the static and dynamical properties of such a state. We
will only be concerned with the Hubbard-Holstein and
the tJ-Holstein models, as minimal systems with local
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electron-electron (e-e) and electron-phonon (e-ph) inter-
actions. In order to focus on the physics of unbound po-
larons (as opposed to bipolarons), we will always consider
the limit of strong local e-e repulsion to prevent the for-
mation of a local bipolaron [13]. The short-range character
of the bare interactions considered in this model greatly
simplifies the numerical analysis on finite clusters. Fur-
thermore, the strong coupling limit of the e-ph interaction
gives rise to small (single-site) polarons, which are individ-
ually rather well understood, thus providing a simple limit
of the model. Since we focus on metallic states, we pur-
posely avoid specific conditions (like, e.g., quarter-filling)
leading to ordered insulating states. Finally we confine
our analysis to the one-dimensional case. This choice is an
inescapable consequence of the smallness of our numeri-
cal clusters, but also allows for useful comparisons with
the wealth of well-established physical results available in
d = 1.

The model reads

H = −t
∑
〈ij〉,σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

c†i,↑ci,↑c
†
i,↓ci,↓

+ g
∑
i,σ

[
c†i,σci,σ − 〈c

†
i,σci,σ〉

] (
ai + a†i

)
+ ω0

∑
i

a†iai.

(1)
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We use units such that the lattice spacing a = 1 and
also ~ = c = 1. To make our analysis more complete,
we also investigate the tJ-Holstein model, where the U
term in (1) is replaced by an Heisenberg interaction HJ =
J
∑
〈ij〉(Si ·Sj − 1

4ninj), with the additional constraint of

no double occupancy
∑
σ c
†
i,σci,σ ≤ 1.

2 The small polaron criterion

A polaronic state can be characterized as a bound state
of electrons and phonons, in which the electronic mo-
tion is accompanied by a significant lattice displacement.
The strong coupling between the electron and the lattice
strongly suppresses the electronic mobility. The carriers
are therefore self-trapped in the potential well that they
generated. The polaronic state is therefore characterized
by two conditions: (a) the energy gain associated with the
self-trapping must be larger than the loss of kinetic energy,
and (b) the local lattice displacement must be sizeable, in
order to significantly reduce the electronic hopping ampli-
tude.

In previous analyses in the single-particle case of the
Holstein model [8,9,12], emphasis was put on the differ-
ence in the criteria for polaron formation in the adiabatic
(ω0 < t ) or antiadiabatic (ω0 > t) regimes. In the adia-
batic regime the crossover to polarons is dictated by the
condition (a), since in this limit, as soon as a bound state
is energetically favorable, the electron mobility is auto-
matically reduced due to the large mass of the lattice. In
the single particle case the energy of the strong-coupling
polaronic state is Epol = −g2/ω0, while the free electron
energy Eel = −2dt. Then the condition for single polaron
formation in the nearly adiabatic (ω0/t < 1) case reads
(see, e.g. Ref. [8]).

λ ≡ g2/(2dtω0) > 1. (2)

In the antiadiabatic regime the crossover for the single-
particle case is instead given by the condition (b), which
in the Holstein model is expressed as α ≡ g/ω0 > 1.

In the presence of many carriers and e-e correlations
the electronic energies and the e-ph coupling are affected,
so that the criterion for polaron formation in the adiabatic
regime (which involves a condition on the energies) will be
different in the many particle case with respect to the sin-
gle particle one. On the other hand condition (b) ruling
polaron formation in the antiadiabatic regime is not sub-
stantially changed by increasing the number of particles.
In particular the slow dynamics of the electronic degrees
of freedom when ω0 � t strongly suppresses electronic
screening processes. Therefore in the antiadiabatic regime
the single-particle condition α = g/ω0 > 1 of large ion
displacement is expected to hold also in the many particle
case.

For these reasons we mostly investigate here the phys-
ically relevant case of the adiabatic regime where the
phonon frequency ω0 is smaller than the electronic en-
ergy scale t (the typical electronic energy scale stays t
even in the presence of correlations). The same analysis

has also been applied to the antiadiabatic case, where it is
confirmed that the single-particle condition α > 1 holds in
the many-particle case as well for all the considered values
of parameters and fillings. Therefore we will only present
results for the adiabatic regime. In this case the energetic
balance condition rules the crossover. A polaronic bound
state can therefore be realized only if the energy of such a
state Epol is lower than the energy of the electrons in the
absence of electron-phonon interaction Eel.

It is quite natural to generalize the condition (2) to
the many-particle case by comparing the energy of the
strongly coupled e-ph system, Epol, where the polarons
are strongly localized and the kinetic energy is negligible,
with the energy of the purely electronic system (i.e. of the
simple Hubbard or tJ models). In other words, we identify
the value of the coupling for which the polaronic crossover
occurs, g = gc, with the e-ph coupling above which the
energy of the strongly polaronic state is lower than the
energy of the purely electronic state. In this framework it
is useful to generalize the definition of λ by defining the
quantity

λ̃ ≡ Epol(g)/Eel (3)

that reduces to λ for a single particle, and show that the
criterion for small polaron formation in the general case
of finite densities and in the presence of e-e correlation
is λ̃ > 1. Of course this criterion can only be significant
provided the crossover between the purely electronic and
the polaronic regimes is sufficiently sharp, as is indeed the
case in the adiabatic regime [9].

The criterion λ̃ ≡ Epol(g)/Eel > 1 would be of little
use if simple expressions in terms of the bare parameters
or at least simple estimates of Epol(g) and Eel were not
available. Therefore, we now turn to the explicit evalua-
tion of Epol(g) and Eel. Unfortunately, while some simple
arguments allow an easy estimation of the energy in the
strongly polaronic regime, the knowledge of the purely
electronic energy (i.e. of the Hubbard model) is a much
more difficult task. However, we point out that our goal is
not to investigate the Hubbard model by itself, but rather
to analyze the many-body effects of interaction on polaron
formation, once a full knowledge of the purely electronic
system (no matter how complicated) is assumed.

In order to evaluate the strong coupling energy Epol(g)
we start from the atomic limit of zero hopping t = 0, in
which the Hubbard-Holstein model can be exactly solved.
In this case a Lang-Firsov canonical transformation allows
the elimination of the linear e-ph coupling by introducing
a shift α ≡ g/ω0 of the ionic equilibrium position. An effec-
tive non-retarded attraction between the particles arises
Uattr = −2g2/ω0, which must be compensated by a larger
repulsion U to avoid (local) bipolaron formation. In this
atomic limit each site is independent and each electron
individually shifts the ionic site on which it resides form-
ing a strong-coupling polaron of energy E1−pol = −g2/ω0.
An opposite shift, but with identical energy gain, is in-
duced by holes, so that, for Ns sites at average filling n
the total energy is Et=0

pol = −Nsn(1− n)g2/ω0. As soon as
a finite hopping is introduced, a coherent kinetic energy
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contribution arises, which, even in the absence of e-e in-
teraction is exponentially small (t∗ = t exp(−α2)) and can
safely be neglected in our estimate of the energy. However,
more relevant additional corrections arise, which are due
to incoherent virtual hopping processes of the electrons
to neighboring sites. These processes naturally depend on
the occupancy of the neighboring sites. If the site is unoc-
cupied, the electron can hop onto it without paying any
electronic repulsion U . However, this hopping occurs in-
stantaneously without allowing the lattice time to relax.
Therefore an intermediate virtual state of higher energy
proportional to g2/ω0 � t is reached, before a second
hop restores the initial configuration. In the limit of very
strong e-ph coupling and accounting for the probability
for a singly occupied site to have at least one empty site
nearby, the virtual double-hopping process lowers the to-
tal energy by an amount of the order [14]

E1/λ ≈ −2Nsn(1− n)t2/(g2/ω0). (4)

On the other hand a second incoherent correction to the
polaronic energy occurs when the neighboring site is al-
ready occupied by an electron with opposite spin (for par-
allel spins this process is forbidden by the Pauli principle).
In this case a virtual state is reached where an e-e interac-
tion is also present giving rise to a superexchange coupling.
In the case of finite e-e repulsion U , this term provides an
additional incoherent contribution to the energy of the po-
laronic state. In a recent work [15] we showed that the e-ph
coupling dresses the effective magnetic coupling J leading
to an increase of its value. However, for a Holstein-like
e-ph coupling no corrections to the purely electronic J
arise up to order g2/U . For the sake of simplicity we there-
fore estimate this contribution EJel by using the value for
g = 0 calculated by exact diagonalization.

As a result, the energy of the polaronic state can be
estimated as

Epol ≈ −Nsn(1− n)g2/ω0 + E1/λ + EJel. (5)

It is worth noting that in the above expression the bare e-
ph coupling and phonon frequency appear. This is because
in the strong-coupling regime, where the coherent motion
of the polarons is suppressed, no screening occurs due to
the very massive carriers. This situation is different from
the case of a Fermi liquid, where the presence of the e-e in-
teraction leads to a dressing of the e-ph coupling [16] and
is complementary to the case of an interacting electron
system near the Mott-Hubbard transition (or near the
Luther-Emery point for one-dimensional systems), where
Umklapp processes render the e-ph interactions ineffec-
tive: If a system is localized by the e-e interaction, this
latter screens out the effects of the e-ph coupling and,
conversely, if a system is localized by strong e-ph interac-
tions (as in the present case), the e-e interactions have no
effect on the phonon parameters.

The evaluation of the purely electronic energy Eel of
the Hubbard model is not possible in general unless one
resorts to numerical methods. However, for the sake of
simplicity, we consider a one-dimensional system for which

we can evaluate the energy in a simple way using well-
known results. In the U =∞ limit an exact mapping exists
between the Hubbard model and a system of free spinless
fermions [17], and in the more general case of finite U the
Bethe ansatz solution of the Hubbard model provides the
exact results (see, e.g., Ref. [18]). To make our calculation
similar for the Hubbard and the tJ model, the alternative
we chose is to directly carry out a numerical evaluation of
the ground state energy of the purely electronic models on
a one-dimensional cluster as a function of U or J and n.

We are now in a position to check the validity of the
criterion λ̃c ≡ Epol(gc)/Eel ∼ 1 by means of exact diago-
nalization of finite clusters. Due to the infinite set of acces-
sible phonon states on each site, we need to truncate the
phonon Hilbert space by allowing for a finite maximum
number NMax

ph of phonons on each site. The crossover be-
tween quasi-free electrons and a polaronic state is signaled
by rather abrupt changes in the behavior of most physi-
cal quantities; many quantities can be used to identify the
crossover coupling, some examples of which are the elec-
tronic kinetic energy or effective mass, the electron-lattice
correlation function or the average number of phonons per
site, and so on. We identify the crossover value g = gc sep-
arating the two regimes with the value of g for which the
slope of the average number of phonons per site 〈nph(g)〉
is maximum [20]. We always limited the calculation to val-
ues of g such that 〈nph(g)〉 < NMax

ph and checked that the
result was well converged by changing NMax

ph .
We performed calculation for various fillings in 5 and

6 sites clusters for ω0/t = 0.2. In Table 1 we report, be-
sides the electronic energy and the magnetic energy, the
crossover values of λ and λ̃ obtained using the numerically
calculated values of gc.

As far as λ̃ is concerned, we report results obtained
both neglecting the incoherent 1/λ contribution E1/λ
(sixth column, λ̃c) and considering such contribution (sev-
enth column, λ̃′c)

Note that for U =∞ an additional symmetry appears
around quarter-filling (n = 1/2), making the filling n =
1/5 equivalent to n = 4/5 and n = 2/5 equivalent to
n = 3/5.

It is evident from Table 1 that the criterion λ̃c ≈ 1 is
quite well satisfied, even neglecting the incoherent term,
whereas the values of λc are significantly different for dif-
ferent parameters. This result is particularly remarkable
since the energies Epol(gc) and Eel entering in the nu-
merator and the denominator of λ̃ respectively, vary sig-
nificantly with filling and Coulomb repulsion U (or J).
Various observations are in order. First of all it is ap-
parent that the calculation of λ̃c without including the
incoherent contribution E1/λ to Epol gives quite homoge-
neous values of λ̃c ∼ 1 (within 10%) for systems with
different values of U or J , but similar filling. Larger dis-
crepancies (but always smaller than 20%) exist between
different classes of fillings. We notice that the values
of λ̃c for finite U or J are slightly underestimated be-
cause we estimated the magnetic energy in Epol taking the
purely electronic contribution, which is known to be lower
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Table 1. Filling (first column) and interaction (second col-
umn) dependencies of the total purely electronic energy (third
column), of the purely magnetic energy (fourth column), of λc

found with the maximum derivative of 〈nph(g)〉 (fifth column),
and of the λ̃c’s calculated without (λ̃c) and with (λ̃′c) the E1/λ
correction in Epol for ω0/t = 0.2.

n U Eel EJel λc λ̃c λ̃′c

1/6 ∞ −2.00000 0. 1.187 0.989 1.340

1/5 ∞ −2.00000 0. 1.228 0.983 1.308

2/6 ∞ −3.46410 0. 1.069 0.823 1.183

2/5 ∞ −3.23607 0. 1.076 0.798 1.143

2/5 10 −3.48806 −0.14253 1.269 0.910 1.187

2/5 20 −3.35407 −0.06861 1.136 0.826 1.143

2/5 J = 0.4 −3.35407 −0.12572 1.182 0.883 1.186

2/5 J = 0.2 −3.29317 −0.05896 1.102 0.821 1.152

3/5 10 −3.71681 −0.30940 1.099 0.793 1.087

3/5 20 −3.46485 −0.14124 1.079 0.788 1.109

3/5 J = 0.4 −3.50730 −0.28743 1.002 0.767 1.109

3/5 J = 0.2 −3.36766 −0.13559 1.040 0.781 1.124

4/5 10 −3.22487 −0.92167 1.463 1.012 1.181

4/5 20 −2.60681 −0.45633 1.343 0.999 1.228

4/5 J = 0.4 −2.90651 −0.91216 1.201 0.975 1.204

4/5 J = 0.2 −2.45174 −0.45336 1.215 0.978 1.246

than in the presence of e-ph coupling [15]. This under-
estimation is proportionally more crude for larger J or
smaller U values. Correcting for this effect should pro-
duce an even more uniform value for λ̃c. The magnetic
energy in the strongly polaronic regime is also different
from EJel because the reduced itinerancy of the carriers
obviously affects the spin correlations. Therefore a fur-
ther refinement of the estimate of Epol could be obtained
by calculating the magnetic energy in the polaronic state
taking EJel from the purely electronic model with t = 0.
Also in this case a larger magnetic contribution would be
found (when the carriers are localized the magnetic cor-
relations are obviously stronger) and this would go in the
direction of rendering the values for λ̃c more uniform.

An additional important ingredient in the estimate of
λ̃c turns out to be the contribution E1/λ of the incoher-
ent hopping processes to Epol (see Eq. (5)). The estimated
filling dependent contribution (4) leads to a sizable mod-
ification of the criterion from λ̃c ∼ 1 to λ̃′c ∼ 1.2. How-
ever, despite this purely quantitative change, which was
not considered in our previous single-polaron work [8], and
which arises from a simple refinement of the estimate of
the polaron energy, the physical meaning of the criterion
stays the same. As a result of this latter filling-dependent
improvement in the estimate of the polaron energy, the
crossover values λ̃c’s reported in the last column of
Table 1 turn out to be more homogeneous with varying
filling within each class of interaction values and the cri-
terion λ̃′c ≈ 1.2 seems to be generically satisfied within a
few percent.
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g=0.6t

g=0.9t

ω

A
( 

 ) ω

Fig. 1. Spectral density (solid line for PE, dashed line for
IPE) for U = 10 t and ω0/t = 0.4, for various values of g and
n = 4/5.

3 Dynamical properties

In the previous section, we characterized the crossover
from weak to strong coupling regimes through the anal-
ysis of static properties, namely the average number of
phonons. In this section we consider the effects of this
polaron-formation crossover on dynamical properties such
as the spectral densities A(ω) and the dynamical conduc-
tivity σ(ω). Here we report on this investigation for the
specific but typical case of the Hubbard-Holstein model
with U = 10 t.

3.1 Spectral function

In this section we study the spectral density associated
with the injection of an electron (inverse photoemis-
sion, IPE)

A+
σ (ω) =

1
N

∑
k,n

|〈φM+1
n |c†kσ|φM0 〉|2δ(ω − (EM+1

n −EM0 )),

(6)

and the corresponding quantity for the emission of an elec-
tron (photoemission, PE)

A−σ (ω) =
1
N

∑
k,n

|〈φM−1
n |ckσ |φM0 〉|2δ(ω + (EM−1

n −EM0 )).

(7)

In Figure 1 we show the PE (solid line) and IPE (dashed
line) spectral densities for a 5-site cluster and four elec-
trons with U = 10 t, for different values of g ranging from
g = 0 to g = 0.9 t.

A recent k-resolved spectral analysis in the two-
dimensional tJ model with two holes [21], shows a
markedly different behavior between the incoherent (local)
excitations at high energies, not substantially affected by
e-ph coupling, and the dispersive “quasiparticle” states
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near the Fermi level, which become very massive with
increasing g [22]. On the contrary this behavior is not
present in our one-dimensional cluster, where the fact that
electrons are composites of holons and spinons leads to
all electronic excitations in the upper and lower Hubbard
bands being incoherent. These are only marginally af-
fected by the e-ph interaction and mainly display a broad-
ening, which is particularly evident in the upper Hubbard
band. A closer inspection also allows one to detect the ef-
fects of multiphonon excitations dressing the purely elec-
tronic states by forming “shoulders” or “combs” with ex-
citation energies spaced by ω0.

The presence of a phonon-induced retarded local at-
traction also reduces the local instantaneous Hubbard re-
pulsion U . For the moderate g = 0.3 t and g = 0.6 t,
this attractive effect is not large enough (. 2g2/ω0 . 2)
to be clearly visible in a marked reduction of the gap
between the lower and upper Hubbard bands. Rather a
small leaking of spectral weight at the edges of the gap re-
sults from the much more evident broadening mentioned
above. The effective phonon-mediated attraction increases
the amount of doubly occupied sites in the ground state
thus modifying the relative weight of the spectral densities
related to the injection (inverse photoemission, IPE) or to
the emission (photoemission, PE) of electrons, represented
by the dashed and solid lines in Figure 1 respectively. For
the large value of U = 10 t and for g = 0.3 t and g = 0.6 t,
which are substantially smaller than those leading to bipo-
laron formation, the amount of doubly occupied sites in
the ground state is always small and its small changes do
not significantly affect the relative weight of the photoe-
mission and inverse photoemission spectral features. As a
consequence one observes an approximate, but quite well-
satisfied conservation of the spectral weight in the PE and
IPE parts of the spectrum separately for moderate values
of g. As the e-ph coupling is further increased to g = 0.9 t
the energy gap between the upper and the lower Hubbard
band is substantially reduced and the weight conservation
no longer holds separately for the PE and IPE parts of
the spectrum.

On the other hand, for the largest values of g we ob-
serve a substantial transfer of spectral weight from the
upper Hubbard band, which is broadened and lowers its
overall intensity, to the lower Hubbard band. This latter
acquires weight essentially because the possibility of excit-
ing phonons allows more states to be reached by injecting
one electron in the system by conserving the momentum
and without increasing the number of doubly occupied
sites in the final state.

3.2 Optical conductivity

The real part of the conductivity for a one-dimensional
tight-binding model at zero temperature may be expressed
in terms of the Kubo formula

σ(ω) = Dδ(ω) +
∑
n6=0

|〈φn|J|φ0〉|2δ(ω − (En −EM0 )), (8)

0.0 10.0 20.0

g=0

g=0.3t

g=0.6t

g=0.9t

ω

σ(
ω

)

Fig. 2. Finite frequency optical conductivity for U = 10 t and
ω0/t = 0.4, for various values of g and n = 4/5.

where J is the current operator. The finite frequency
part (second term) can be straightforwardly calculated by
means of the Lanczos algorithm. The coefficient of the zero
frequency delta function contribution D is usually called
the Drude weight and can be evaluated by combining the
above with the well known sumrule for the total conduc-
tivity in terms of the kinetic energy 〈Ht〉,∫ ∞

0

σ(ω)dω = −πe
2

2
〈Ht〉. (9)

In Figure 2 we show the behavior of the finite-frequency
part of the dynamical conductivity for the same param-
eters as in Figure 1. Again the most apparent effect of
the coupling with the phonons is a substantial broaden-
ing of the high-energy excitations. A second remarkable
feature is represented by the marked increase of spectral
weight at low frequencies. As in the case of the single-
particle spectral density, this occurs because the possibil-
ity of phonon excitations accompanying electron particle-
hole excitations allows for a large number of intraband
transitions (i.e. between states with the same number of
doubly occupied sites). This effect is made particularly
apparent by the comparison with the g = 0 case (“upper-
most panel” in Fig. 2), where the small number of sites
and of holes strongly suppresses the weight at frequencies
of order t [23].

As far as the zero-frequency contribution is concerned,
although quasiparticle transport is absent in d = 1, there
is still coherent charge (holon) transport. At T = 0 this
leads to the presence of a δ-like Drude conductivity at zero
frequency. It is noticeable that this ideal conductance be-
havior persists at finite values of g at least at T = 0 despite
the non-integrable character of the model with g 6= 0.

The suppression of coherent charge transport via
phonon dressing of the holon excitations leads to a strong
decrease of the Drude spectral weight in the dynamical
conductivity. As shown in Figure 3, the Drude weight re-
lated to absorption from coherent excitations at ω = 0
decreases slowly in the weak-coupling regime (λ . 1)
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Fig. 3. Integrated optical conductivity (Total Sumrule), Drude
weight and finite frequency weight as functions of g for U = 10
t, ω0/t = 0.4 and n = 4/5.

whereas it is strongly suppressed for larger e-ph coupling
when the polaronic crossover sets in. In the latter case the
rapid decrease is consistent with the usual exponential
decrease of the charge-carrier band-width v → v exp−α2.
The only difference is now that in d = 1, v no longer is to
be interpreted as the Fermi velocity of quasiparticles, but
is related to the holon dispersion. On the other hand, by
increasing g, spectral weight is transferred to higher en-
ergies, as indicated by the increase of the finite frequency
weight in Figure 3.

Although we cannot easily access the very strong cou-
pling regime, we also checked in a few cases that for
stronger couplings than those reported in the figure, this
incoherent high-energy part of the absorption also de-
creases, but more slowly, according to the expected 1/g
behavior. The overall decrease of the total absorption is a
natural consequence of the sum rule (9) relating the fre-
quency integrated dynamical conductivity to the average
kinetic energy.

4 Conclusions

In this work, we have investigated the electron-polaron
crossover in the many-particle case. We mainly considered
the adiabatic regime, in which the condition for polaron
formation is modified with respect to the single-particle
case. The main result is that a clear criterion has been
identified determining the strength of e-ph coupling lead-
ing to polaron formation. Remarkably, a simple physical
interpretation of the criterion is still possible in the many-
particle case provided that the single electron energy is
replaced by the many-body purely electronic energy and
the magnetic energy contribution is considered in the po-
laronic phase.

The effects of the intermediate polaronic regime have
also been investigated on the dynamical properties. In par-
ticular, both in the single-particle spectral density and
in the optical conductivity, we find that the electron-
to-polaron crossover leads to a broadening of the high

energy (ω ∼ U) features. At the same time the increase
of momentum conserving processes due to the mixed
electron-multiphonon character of the excitations substan-
tially increases the weight of intraband (ω ∼ t) processes.

The above scenario was investigated by numerical ex-
act diagonalization of a 5-site cluster. This leads to sev-
eral limitations. First of all the presence of finite size
effects in such a small system forces the analysis to be
limited to short-range models. Even the analysis of mod-
els with a nearest-neighbor intersite e-ph coupling like the
Su-Schrieffer-Heeger model lead to substantially larger
finite-size effects. Another quite interesting problem,
which we could not address within our small-cluster analy-
sis is related to the competition with other phonon-driven
instabilities like charge-density-waves (CDW), phase sep-
aration or incommensurate stripe formation. Even in the
case of these latter two instabilities, which are not Fermi-
surface instabilities, the small size of our system does not
allow for a systematic comparison with the polaron forma-
tion within our numeric analysis. On the other hand, some
information can be gained by comparing our results with
different analyses. In particular as far as phase separation
and (with the inclusion of long-range Coulomb interac-
tions) stripe formation, the analyses of references [16,24]
indicate that they occur for e-ph couplings that are smaller
than those leading to polaron formation. The approximate
character of these analyses, however, still leaves room for
further work in this direction. As far as commensurate
CDW formation is concerned, the recent density-matrix
renormalization group analysis of reference [25] in the
infinite-U Hubbard-Holstein model at n = 1/4 indicates
that the CDW instability competes strongly with polaron
formation. However, in the adiabatic regime the CDW
and the polaron instability occur nearby in the phase
diagram (whereas polarons are favored in the antiadia-
batic regime), so it is likely that the polaronic instability
will win for fillings far from 1/4, which are less favorable
for CDW.

Part of this work has been carried out with the financial sup-
port of the INFM, PRA HTSC 1996. The Authors would like
to acknowledge Prof. S. Ciuchi, C. Castellani, C. Di Castro and
D. Feinberg for many fruitful discussions.
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